YES 2.38 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Main
  ((properFraction :: RealFrac a => a  ->  (Int,a)) :: RealFrac a => a  ->  (Int,a))

module Main where
  import qualified Prelude



Lambda Reductions:
The following Lambda expression
\(_,r)→r

is transformed to
r0 (_,r) = r

The following Lambda expression
\(q,_)→q

is transformed to
q1 (q,_) = q



↳ HASKELL
  ↳ LR
HASKELL
      ↳ IFR

mainModule Main
  ((properFraction :: RealFrac a => a  ->  (Int,a)) :: RealFrac a => a  ->  (Int,a))

module Main where
  import qualified Prelude



If Reductions:
The following If expression
if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero

is transformed to
primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y))
primDivNatS0 x y False = Zero

The following If expression
if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x

is transformed to
primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y)
primModNatS0 x y False = Succ x



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
HASKELL
          ↳ BR

mainModule Main
  ((properFraction :: RealFrac a => a  ->  (Int,a)) :: RealFrac a => a  ->  (Int,a))

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.
Binding Reductions:
The bind variable of the following binding Pattern
frac@(Double vx vy)

is replaced by the following term
Double vx vy

The bind variable of the following binding Pattern
frac@(Float wv ww)

is replaced by the following term
Float wv ww



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
HASKELL
              ↳ COR

mainModule Main
  ((properFraction :: RealFrac a => a  ->  (Int,a)) :: RealFrac a => a  ->  (Int,a))

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
HASKELL
                  ↳ LetRed

mainModule Main
  ((properFraction :: RealFrac a => a  ->  (Int,a)) :: RealFrac a => a  ->  (Int,a))

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
(fromIntegral q,r :% y)
where 
q  = q1 vu30
q1 (q,wy) = q
r  = r0 vu30
r0 (wz,r) = r
vu30  = quotRem x y

are unpacked to the following functions on top level
properFractionQ xv xw = properFractionQ1 xv xw (properFractionVu30 xv xw)

properFractionQ1 xv xw (q,wy) = q

properFractionR xv xw = properFractionR0 xv xw (properFractionVu30 xv xw)

properFractionR0 xv xw (wz,r) = r

properFractionVu30 xv xw = quotRem xv xw



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
HASKELL
                      ↳ NumRed

mainModule Main
  ((properFraction :: RealFrac a => a  ->  (Int,a)) :: RealFrac a => a  ->  (Int,a))

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
HASKELL
                          ↳ Narrow

mainModule Main
  (properFraction :: RealFrac a => a  ->  (Int,a))

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(xx3000), Succ(xx400)) → new_primPlusNat(xx3000, xx400)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(xx3100)) → new_primMulNat(xx3100)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNat(Succ(xx3000), Succ(xx400)) → new_primMinusNat(xx3000, xx400)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNatS(Succ(xx330), Succ(xx340)) → new_primMinusNatS(xx330, xx340)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ DependencyGraphProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Zero) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58))
new_primModNatS(Succ(Zero), Zero) → new_primModNatS(new_primMinusNatS1, Zero)
new_primModNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primModNatS0(xx30000, xx31000, xx30000, xx31000)
new_primModNatS(Succ(Succ(xx30000)), Zero) → new_primModNatS(new_primMinusNatS0(xx30000), Zero)
new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)
new_primModNatS0(xx57, xx58, Zero, Zero) → new_primModNatS00(xx57, xx58)
new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58))

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)
new_primMinusNatS1Zero
new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
QDP
                                      ↳ UsableRulesProof
                                    ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS(Succ(Succ(xx30000)), Zero) → new_primModNatS(new_primMinusNatS0(xx30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)
new_primMinusNatS1Zero
new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QReductionProof
                                    ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS(Succ(Succ(xx30000)), Zero) → new_primModNatS(new_primMinusNatS0(xx30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
QDP
                                              ↳ RuleRemovalProof
                                    ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS(Succ(Succ(xx30000)), Zero) → new_primModNatS(new_primMinusNatS0(xx30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_primModNatS(Succ(Succ(xx30000)), Zero) → new_primModNatS(new_primMinusNatS0(xx30000), Zero)

Strictly oriented rules of the TRS R:

new_primMinusNatS0(xx30000) → Succ(xx30000)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primMinusNatS0(x1)) = 2 + 2·x1   
POL(new_primModNatS(x1, x2)) = x1 + x2   



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ RuleRemovalProof
QDP
                                                  ↳ PisEmptyProof
                                    ↳ QDP
                              ↳ QDP

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
QDP
                                      ↳ UsableRulesProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Zero) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58))
new_primModNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primModNatS0(xx30000, xx31000, xx30000, xx31000)
new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)
new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58))
new_primModNatS0(xx57, xx58, Zero, Zero) → new_primModNatS00(xx57, xx58)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)
new_primMinusNatS1Zero
new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QReductionProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Zero) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58))
new_primModNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primModNatS0(xx30000, xx31000, xx30000, xx31000)
new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)
new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58))
new_primModNatS0(xx57, xx58, Zero, Zero) → new_primModNatS00(xx57, xx58)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(x0)
new_primMinusNatS1



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
QDP
                                              ↳ Rewriting
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Zero) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58))
new_primModNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primModNatS0(xx30000, xx31000, xx30000, xx31000)
new_primModNatS0(xx57, xx58, Zero, Zero) → new_primModNatS00(xx57, xx58)
new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58))
new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primModNatS0(xx57, xx58, Succ(xx590), Zero) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58)) at position [0] we obtained the following new rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Zero) → new_primModNatS(new_primMinusNatS2(xx57, xx58), Succ(xx58))



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Rewriting
QDP
                                                  ↳ Rewriting
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Zero) → new_primModNatS(new_primMinusNatS2(xx57, xx58), Succ(xx58))
new_primModNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primModNatS0(xx30000, xx31000, xx30000, xx31000)
new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)
new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58))
new_primModNatS0(xx57, xx58, Zero, Zero) → new_primModNatS00(xx57, xx58)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(Succ(xx57), Succ(xx58)), Succ(xx58)) at position [0] we obtained the following new rules:

new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(xx57, xx58), Succ(xx58))



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ Rewriting
QDP
                                                      ↳ QDPOrderProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Zero) → new_primModNatS(new_primMinusNatS2(xx57, xx58), Succ(xx58))
new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(xx57, xx58), Succ(xx58))
new_primModNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primModNatS0(xx30000, xx31000, xx30000, xx31000)
new_primModNatS0(xx57, xx58, Zero, Zero) → new_primModNatS00(xx57, xx58)
new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primModNatS0(xx57, xx58, Succ(xx590), Zero) → new_primModNatS(new_primMinusNatS2(xx57, xx58), Succ(xx58))
new_primModNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primModNatS0(xx30000, xx31000, xx30000, xx31000)
new_primModNatS0(xx57, xx58, Zero, Zero) → new_primModNatS00(xx57, xx58)
The remaining pairs can at least be oriented weakly.

new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(xx57, xx58), Succ(xx58))
new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primMinusNatS2(x1, x2)) = x1   
POL(new_primModNatS(x1, x2)) = x1   
POL(new_primModNatS0(x1, x2, x3, x4)) = 1 + x1   
POL(new_primModNatS00(x1, x2)) = x1   

The following usable rules [17] were oriented:

new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ Rewriting
                                                    ↳ QDP
                                                      ↳ QDPOrderProof
QDP
                                                          ↳ DependencyGraphProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS00(xx57, xx58) → new_primModNatS(new_primMinusNatS2(xx57, xx58), Succ(xx58))
new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ Rewriting
                                                    ↳ QDP
                                                      ↳ QDPOrderProof
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
QDP
                                                              ↳ UsableRulesProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ Rewriting
                                                    ↳ QDP
                                                      ↳ QDPOrderProof
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
QDP
                                                                  ↳ QReductionProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Rewriting
                                                ↳ QDP
                                                  ↳ Rewriting
                                                    ↳ QDP
                                                      ↳ QDPOrderProof
                                                        ↳ QDP
                                                          ↳ DependencyGraphProof
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
                                                                ↳ QDP
                                                                  ↳ QReductionProof
QDP
                                                                      ↳ QDPSizeChangeProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(xx57, xx58, Succ(xx590), Succ(xx600)) → new_primModNatS0(xx57, xx58, xx590, xx600)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xx33, xx34, Zero, Zero) → new_primDivNatS00(xx33, xx34)
new_primDivNatS0(xx33, xx34, Succ(xx350), Succ(xx360)) → new_primDivNatS0(xx33, xx34, xx350, xx360)
new_primDivNatS0(xx33, xx34, Succ(xx350), Zero) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))
new_primDivNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primDivNatS0(xx30000, xx31000, xx30000, xx31000)
new_primDivNatS00(xx33, xx34) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))
new_primDivNatS(Succ(Succ(xx30000)), Zero) → new_primDivNatS(new_primMinusNatS0(xx30000), Zero)
new_primDivNatS(Succ(Zero), Zero) → new_primDivNatS(new_primMinusNatS1, Zero)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)
new_primMinusNatS1Zero
new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
QDP
                                      ↳ UsableRulesProof
                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(xx30000)), Zero) → new_primDivNatS(new_primMinusNatS0(xx30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)
new_primMinusNatS1Zero
new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QReductionProof
                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(xx30000)), Zero) → new_primDivNatS(new_primMinusNatS0(xx30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
QDP
                                              ↳ RuleRemovalProof
                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(xx30000)), Zero) → new_primDivNatS(new_primMinusNatS0(xx30000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_primDivNatS(Succ(Succ(xx30000)), Zero) → new_primDivNatS(new_primMinusNatS0(xx30000), Zero)

Strictly oriented rules of the TRS R:

new_primMinusNatS0(xx30000) → Succ(xx30000)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1 + x2   
POL(new_primMinusNatS0(x1)) = 2 + 2·x1   



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ RuleRemovalProof
QDP
                                                  ↳ PisEmptyProof
                                    ↳ QDP

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
QDP
                                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xx33, xx34, Zero, Zero) → new_primDivNatS00(xx33, xx34)
new_primDivNatS0(xx33, xx34, Succ(xx350), Succ(xx360)) → new_primDivNatS0(xx33, xx34, xx350, xx360)
new_primDivNatS0(xx33, xx34, Succ(xx350), Zero) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))
new_primDivNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primDivNatS0(xx30000, xx31000, xx30000, xx31000)
new_primDivNatS00(xx33, xx34) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)
new_primMinusNatS1Zero
new_primMinusNatS0(xx30000) → Succ(xx30000)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xx33, xx34, Zero, Zero) → new_primDivNatS00(xx33, xx34)
new_primDivNatS0(xx33, xx34, Succ(xx350), Succ(xx360)) → new_primDivNatS0(xx33, xx34, xx350, xx360)
new_primDivNatS0(xx33, xx34, Succ(xx350), Zero) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))
new_primDivNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primDivNatS0(xx30000, xx31000, xx30000, xx31000)
new_primDivNatS00(xx33, xx34) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS0(x0)
new_primMinusNatS1
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(x0)
new_primMinusNatS1



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
QDP
                                              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xx33, xx34, Zero, Zero) → new_primDivNatS00(xx33, xx34)
new_primDivNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primDivNatS0(xx30000, xx31000, xx30000, xx31000)
new_primDivNatS0(xx33, xx34, Succ(xx350), Zero) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))
new_primDivNatS0(xx33, xx34, Succ(xx350), Succ(xx360)) → new_primDivNatS0(xx33, xx34, xx350, xx360)
new_primDivNatS00(xx33, xx34) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primDivNatS(Succ(Succ(xx30000)), Succ(xx31000)) → new_primDivNatS0(xx30000, xx31000, xx30000, xx31000)
The remaining pairs can at least be oriented weakly.

new_primDivNatS0(xx33, xx34, Zero, Zero) → new_primDivNatS00(xx33, xx34)
new_primDivNatS0(xx33, xx34, Succ(xx350), Zero) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))
new_primDivNatS0(xx33, xx34, Succ(xx350), Succ(xx360)) → new_primDivNatS0(xx33, xx34, xx350, xx360)
new_primDivNatS00(xx33, xx34) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1 + x2   
POL(new_primDivNatS0(x1, x2, x3, x4)) = 1 + x1 + x2   
POL(new_primDivNatS00(x1, x2)) = 1 + x1 + x2   
POL(new_primMinusNatS2(x1, x2)) = x1   

The following usable rules [17] were oriented:

new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Zero) → Zero



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
QDP
                                                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xx33, xx34, Zero, Zero) → new_primDivNatS00(xx33, xx34)
new_primDivNatS0(xx33, xx34, Succ(xx350), Succ(xx360)) → new_primDivNatS0(xx33, xx34, xx350, xx360)
new_primDivNatS0(xx33, xx34, Succ(xx350), Zero) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))
new_primDivNatS00(xx33, xx34) → new_primDivNatS(new_primMinusNatS2(xx33, xx34), Succ(xx34))

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
QDP
                                                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xx33, xx34, Succ(xx350), Succ(xx360)) → new_primDivNatS0(xx33, xx34, xx350, xx360)

The TRS R consists of the following rules:

new_primMinusNatS2(Succ(xx330), Succ(xx340)) → new_primMinusNatS2(xx330, xx340)
new_primMinusNatS2(Zero, Succ(xx340)) → Zero
new_primMinusNatS2(Zero, Zero) → Zero
new_primMinusNatS2(Succ(xx330), Zero) → Succ(xx330)

The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
QDP
                                                          ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xx33, xx34, Succ(xx350), Succ(xx360)) → new_primDivNatS0(xx33, xx34, xx350, xx360)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(Succ(x0), Zero)
new_primMinusNatS2(Succ(x0), Succ(x1))
new_primMinusNatS2(Zero, Zero)
new_primMinusNatS2(Zero, Succ(x0))



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ QDP
                                                      ↳ UsableRulesProof
                                                        ↳ QDP
                                                          ↳ QReductionProof
QDP
                                                              ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xx33, xx34, Succ(xx350), Succ(xx360)) → new_primDivNatS0(xx33, xx34, xx350, xx360)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: